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1. INTRODUCTION

Although from a historical point of view, composite materials have
found practical use for centuries, during the past two decades there has
been a tremendous increase in the use of composite materials in engineering
applications, particularly in aerospace engineering. One of the biggest
attractions of these materials is that one is able to design and
manufacture such materials to sustain a specific type of loading in a most
efficient manner. If properly produced, composites can often achieve a
combination of properties that are far superior to the properties of the
individual constituents acting independently.

It is well known that gas turbine engine structures, particularly
those components directly in the hot gas flow path, are subjected to
extremely severe thermal and mechanical loading that can often lead to
creep enhanced distortion, cracking and low cycle fatigue. As the demand
for more efficient propulsion system rises so does the thermal and
mechanical loading. It is unlikely that the current generations of metal
alloys would be suitable candidates for structural components in the future
generations of efficient propulsion systems. Ceramic components are often
thought to be ideal as far as their thermal durability is concerned.
Unfortunately, ceramics do not have adequate tensile strength to sustain a
high leve; of mechanical loading. In recent years there has been
significant effort in the attempt to incorporate fibrous inclusions within
a ceramic matrix to develop a class of new materials (ceramic composites)
for advanced engineering applications.

The mechanical behavior of ceramic composites under nonlinear, thermal
and dynamic loading is extremely complex and can only be understood if the
observed behavior is interpreted in terms of micromechanical analyses.

Such analyses must take care of the complex interaction of the individual



fibers or bundles of fibers embedded in the three-dimensional ceramic
matrix and must allow for increasing levels of sophistication in terms of
the idealization of the fibers as well as the ceramic metrix. In addition
complex interface behavior and controlled failure of the fiber must be
considered.

This report details progress made during the period of March 1988 to
December 1988 in a five-year program commencing in March 1988, towards the
development of a boundary element code designed for the micromechanical
studies of advanced ceramic composites. Additional effort has been made in
generalizing the implementation to allow the program to be applicable to
real problems in the aerospace industry.

The primary goal of the first year has been to develop the boundary
integral formulation for a fully-bonded elastic inclusion within an elastic
matrix, and to implement the formulation in a boundary element program in a
sufficiently general manner as to facilitate implementation of future
development for the remainder of the present program of research.

Significant progress has been achieved during the first year of the
present effort. The analytic and numerical basis for the ceramic composite

program has been developed. This effort included:

1. the derivation of the boundary integral formulation modified for holes
and inserts,

2. the derivation of the kernel function for one-dimensional 1line
integration of holes and inserts,

3. the implementation for the assembly and solution of inserts, and

4. the validation and verification runs using the developed computer

code.



The ceramic composite formulation has been implemented in the tﬁree—
dimensional boundary element computer code 'BEST3D’ which was developed for
MASA by Pratt and Whitney and the State University of New York at Buffalo
under contract NAS3-23697. BEST3D has been adopted as the base for the
ceramic composite program, so that many of the enhanced features of this
general purpose boundary element code can be utilized. Some of these
facilities include sophisticated numerical integration, the capability of
local definition of boundary conditions, and the use of quadratic shape
functions for modeling geometry and field variables on the boundary. The
multi-region implementation permits a body to be modeled in substructural
parts; thus dramatically reducing the cost of the analysis. Furthermore,
it allows a body consisting of regions of different ceramic matrices and
inserts to be studied.

In the next section, the existing approaches for the study of the
micromechanical behavior of composites are briefly reviewed. This is
followed by the development of the boundary element formulation for ceramic
composites in Section 3. Section 4 outlines the development of the general
computer program implementation followed by the description of the
program’s data input and output in Section 5. Example data and results are
included to demonstrate the convenience in modeling and analyzing
composites using this code. In Section 6, a number of numerical examples
are presented to demonstrate the power of the present implementation. This

report is then concluded with a summary and plan for future development.



2. REVIEW OF EXISTING APPROACHES

A number of techniques of varying degree of sophistication are
presently used to study the micromechanical behavior of composites. 1In
essence the various micromechanical analyses recognize the inhomogeneous
nature of the composite material, but generally ignore finer details of the
structure of the fiber and matrix to a varying degree. Numerous
approximations are made concerning the packing geometry and response fields
within the body so that mathematical analyses can be performed to relate
the properties and concentration of fibers and matrix to the average
property of the body. A complete bibliography of these methods which are
variously called ‘'mechanics of materials’, 'self-consistent fields’,
'variational methods’ and ‘numerical techniques' are given in Chamis and
Sendeckyj (1968).

Although none of the above mentioned work specifically focuses on
ceramic composites (and it appears that very little is available in the
current literature), the overall conclusions derived apply reasonably well
to the present case.

Rational methods based on mechanics of materials have been developed
over the last decade to explain and predict the behavior of composite
systems in terms of their materials make-up. Some of these simple models
have indeed been very effective. For example, a simple model of the fiber
and resin components responding by parallel reactions to imposed thermal or
mechanical loads is generally adequate to describe and predict the

following longitudinal properties of unidirectional composites:

Longitudinal modulus Ey;

. , . .
Poisson'’s ratio, v12'

Linear thermal expansion coefficient, a

Thermal conductivity, K;-



Primary emphasis in the model has been given to stiffness-limited
structures so that attention has been focused on the longitudinal modulus.
For all practical purposes the contributicns of the matrix phase to this
property are often assumed negligible.

The properties perpendicular to the direction of the fibers are not so
simply described nor so readily predicted. A simple model of the fiber and
matrix components responding in series to imposed loads leads to
conservative estimates of the properties in this direction. More
comprehensive and elaborate models show that the transverse properties and

shear moduli are sensitive to:

the shape of the fibers;
the packing geometry of the fibers;

the variations in spacings of the fibers;

the properties of the matrix.

Ambiquities in the theoretical models make it difficult to isolate and
identify the extent to which each of these factors influences the
transverse properties and shear moduli of composites: qualitatively, it is
clear that the matrix dominates the behavior of these properties.

A model for compressive strength based on a failure mode of in-phase
fiber buckling leads to the conclusion that the compressive strength of
unidirectional composites is determined by the shear modulus of the matrix.
Experimental observations can be rationalized in terms of this model if the
effective shear modulus of the matrix is assumed to be less than that of
the comparable bulk material. Adherence to this model further requires
that the effective shear modulus of the matrix be dependent upon the system
of reinforcing fibers used and/or dependent upon the degree of adhesion

between the fibers and the matrix.



CQurrent theoretical models cannot unambiguously explain or predict the
tensile strength of unidirectional composites; however, examination of
models for the extremes of fiber-matrix coupling leads to aqualitative

identification of the critical factors that influence tensile strength:

the statistics of the fiber strengths;

load transfer efficiency:
- resistance of the matrix to crack propagation;

- the adhesive bond strengths between the fiber and the matrix

The direct contribution of the strength of the matrix to the tensile
strength of the composite is negligible. nonetheless, an imperfect matrix
can seriously detract from the realization of the full strength potential
of the fibers through indirect influences involved in load-transfer
efficiency or crack sensitivity.

Load-transfer efficiency and crack sensitivity appear to be diametric
functions of the adhesive bond strength between the fiber and the matrix.
This implies that some optimum (not necessarily a maximum) adhesive bond
strength is required to establish a proper balance between load transfer
efficiency and the overall strength-toughness of the composite.

It was suggested in some physiochemical models that the molecular
mechanisms involved in achieving adhesion between the fiber and matrix
could significantly perturb the molecular structure of the matrix. these
structural perturbations may develop in an interphase region whose
properties differ appreciably from the properties of bulk material.
Additionally, stress diffusion from fiber to the matrix may also alter the
properties of the matrix locally. Since very large surface areas are
involved in the contact between the fiber and the matrix, a sufficient

quantity of interphase material could be generated to influence the average



ir situ properties of the matrix. Hence, it is reasonable to expect that
the average properties of matrix in composites may differ from the
corresponding properties of bulk material and may differ between various
reinforcing fiber systems.

In conclusion, the contributions of the reinforcing fibers to the
performance of composite materials are qualitatively well understood.
Fiber dominated properties (i.e., the longitudinal modulus) can be
adequately explained and predicted. The direct contribution of the matrix
to the longitudinal modulus and tensile strength is negligible: however,
secondary effects associated with the matrix can detract from the potential
tensile strength of the system. Although current simple theoretical
models indicate that the matrix controls the compressive strength,
transverse moduli, and shear moduli of composites, this is not sufficient
for the solution of boundary value problems involving nonlinear. thermal,
and dynamic loading.

Comparatively little effort has been given to identify the specific
roles of the matrix in the overall performance of advanced composite
materials. This is largely due to the emphasis on longitudinal modulus as
well as the theoretical and experimental difficulties involved in isolating
the contributions of the matrix from effects due to fiber shape and packing
geometry. The possibility that the properties of the matrix can differ
from the properties of bulk material, aswell as differ between various
fiber systems, further complicates the in situ matrix.

Since the interaction of the fiber and matrix is complex, it is likely
that the best technique to use to study the micromechanical behavior would
be a numerical method. It is therefore not surprising that the finite
element method is often used to develop the micromechanical model.

Although it is perhaps the most powerful numerical method over the entire



spectrum of engineering science, it has never been fully satisfactory for
problems with high stress gradient, complex interface phenomena, high
thermal gradients and large variations in the stiffness within the same
body. Unfortunately all of these occur within a ceramic composite
assembly. Nevertheless, the use of finite element to study the

micromechanics of composites is quite common, perhaps primarily due to the

absence of a reasonable alternative.



3. BOUNDARY ELEMENT FORMULATION POR CERAMIC COMPOSITES

3.1 Introduction

It is evident that for proper micromechanical analysis of ceramic
composites one needs to use a numerical method that is capable of
jdealizing the individual fibers or individual bundles of fibers embedded
within a three-dimensional ceramic matrix. The analysis must be able to
take account of high stress gradients from diffusion of stress from the
fiber to the ceramic matrix and allow for the interaction between the
fibers through the ceramic matrix. The analysis must be sophisticated
enough to deal with failure of fibers described by a series of increasingly
sophisticated constitutive models. Finally, the analysis must deal with
micromechanical modeling of the composite under nonlinear thermal and
dynamic loading.

The boundary element method is uniquely suited for the task. BEM has
proven its ability to accurately determine stress near stress
concentration. All functional quantities in a BEM system are on the
boundary and interface surfaces, therefore, allowing nonlinear interaction
between the matrix and insert interface to be readily described by failure
models. Furthermore, recent development has shown the generality and
versatility of boundary element method in analyzing large two- and three-
dimensional models subjected to static, dynamic and thermal loads involving

materials with nonlinear behavior.

3.2 Boundary Integral Equations
The oconventional boundary integral equation for displacement is the

starting point for the ceramic camposite formulation. The displacement for

a point ¢ inside the elastic composite matrix is given below

Cy4(8)uy(e) = _[S[Gijtx,zg)ti(x) - Py (x, 8ug (0185(x)
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are the fundamental solutions of the governing differential

equations of the ceramic matrix of infinite extent
are constants determined by the relative smoothness at ¢
are displacements and tractions

are surfaces of the matrix and holes (left for fiber)

respectively

is the number of fibers

The conventional boundary integral equation for displacement can also

be written for each of the N insert fibers. For the displacement at a

point & inside the mt? jnsert we can write
cli(0g; @ = jsmtc?j(x.g)ti(x) - Py (x, 03 (0168 (x) (3.2)
i.j = 1,2,3

GTi’F?j are the fundamental solutions of the nt? insert

d;j are constants determined by the relative smoothness at & in
insert m

Gi'Ei are displacement and tractions associated with the mth
insert

st the surface of the nt? insert
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We next examine the interface conditions between the composite matrix anc
the insert. For a perfect bond the displacement of the matrix and the
displacement of the inserts along the interface the interface are equal and

the tractions are equal and opposite.

u, .
](X) uj(x) (3.3a)

t. - £.(x) 3.3b)
tJ(x) tJ ( b

For a stiff insert in which the elastic modulus is much greater than the
modulus of the composite matrix, the Poisson ratio of the insert can be
assumed equal to that of the matrix with little error. Therefore, upon

consideration of the surface normals at the interface and examination of

the Fij kernels, we can write the following relation for the mtl’l insert
Fr]E.\j(x’C) = - Fij(x,ﬁ) (3'3C)

Substitution of equations (3.3) into equation (3.2) yields the following

modified boundary integral equation for insert m

ol (®u;(8) = j

Sm[-GTE(x,c)ti(c) + Fij(x.t)ui(x)]dsm(x) (3.4)

Finally adding N insert equations (3.4) to equation (3.1) and cancelling
terms, yields the modified boundary integral equation for the composite

matrix

Cy5 (00 (o) = IS[Gij(x.t)ti(x) - Fy4 0600 (01880

N
P n

+ 5 an[Gij(x,g)ti(x)dS (x) (3.5)

n=1

where

Gy5(x,8) = G45(x,8) - Gj;(x.8)
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Cij constants dependent on the geometry at &

3.3 Numerical Implementation

3.3.1 Discretization

The integral representations of the previous section are exact
statements of the ceramic composite problem, however, approximations such
as finite discretization and numerical integration are necessary in order
to obtain a solution to non-trivial problems. The goal of the numerical
implementation of the present formulation is to obtain the most accurate
and efficient implementation possible.

The first step in this process is the conversion of the two-
dimensional kernel integral over the surface of the hole and insert into a
line integral. By performing an analytical integration in the
circumferential direction on the surface of the hole (or insert) a
considerable amount of computational time can be saved in the numerical
integration. In this process the holes and inserts are assumed to be
circular and a circumferential variation of a,+a;cos® + a,siné is assumed
in the displacements and tractions on the surface of the holes and inserts.
Furthermore, tensor transformations on the kernels are necessary for
inserts oriented at oblique angles with respect to the global axes. The
resulting kernmels, which contain a large family of elliptical integrals,
are long and formidable. The complexity of these kernels prohibits their
presentation in a tidy manner, and therefore, they have not been presented
in this report.

Once the analytical integration is complete, the inserts are
discretized in their axial direction using linear or quadratic shape
functions. In discretized form, equation (3.4) can be written for a single

insert as

12
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cfs @ = - 3 [ jspc?j(x,§>N (n)asP | t]
=1

j 5 ONT(asP | uf (3.6)

where P is the number of line elements, and
NY(n) represents the shape function across the line element.

summation over vy is implied.

In a similar manner, equation (3.5) can be discretized using one- and

two-dimensional shape functions in the following manner.

c - q 1,8
Cj5(8)u; (®) jsq 0% oM (nynpas? el
q=1
Q
- B q B
q=1

Y P
[ jspclj<x LONY (masP ] ¢!
where Q is the number of surface elements on the outer surface of the
composite matrix of the region, and
uP (ny.m,) represents the two- dimensional shape function.

Summation over y and B is implied.

Note that the same number of nodes, and consequently shape functions,
are not necessarily used to describe both the geometric and functional
variations. Specifically, in the present work, the geometry is exclusively
defined by quadratic shape functions. On the other hand, the variation of

the primary quantities can be described, within an element, by either

13



quadratic or linear shape functions. (The introduction of 1linear

variations provides computationally advantageous in some instances.)

3.3.2 Nmmerical Integration

The complexity of the integral in the discretize equation necessitates
the use of numerical integration for their evaluation. The steps in the
integration process for a given element is outlined below:

1. Using appropriate Jacobian transformations, the curvilinear line
elements and surface elements are mapped onto a unit line and planar unit
cells, respectively.

2. Depending on the proximity between the field point (¢) and the
element under consideration, there may be element subdivision and
additional mapping for improved accuracy.

3. Gaussian quadrature formulas are employed for the evaluation of
the discretized integral over each element (or sub-element). These
formulas approximate the integral as a sum of weighted function values at
designated points. The error in the approximation is dependent on the
order of the (Gauss) points employed in the formula. To minimize error
while at the same time maintaining computational efficiency, optimization
schemes are used to choose the best number of points for a particular field

point and element (Watson, 1979).

4. When the field point coincides with a node of the element being
integrated, the integration becomes singular. In this case, the value of
. kernel corresponding to the singular node

]
cannot be calculated accurately by numerical integration. Instead., after

the coefficients of the Fi

the integration of all elements is complete, this value is determined so as
to satisfy a rigid body displacement of the body (Banerjee and Butterfield,

1981).
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3.3.3 Assembly of Equations for Composite Inserts

After the derivation of the modified boundary integral equations and
the analytical circumferential integration of the kernel functions, the
next critical step in the formulation is the assembly of the inserts into
the system equations. Here, efficiency is of utmost importance. The
approach to writing an efficient algorithm is to keep the number of system
equations to a minimum by eliminating all unnecessary unknowns from the
system. The strategy used is to retain in the system only traction
variables on the matrix/insert interface. This is in contrast to a general
multi-region problem where both displacement and tractions are retained on
an interface. The elimination of the displacements on the interface is
achieved through a backsubstitution of the insert equations into the system
equations which are made up exclusively from equations written for the
composite matrix (on the outer surface and on the surface of the holes).
The procedure is described below.

Equation (3.7) is used to generate a system of equations for nodes on
the outer surface of the matrix and for nodes on the surface of the holes

containing the inserts. Written in matrix we have

On Matrix Surface: Gt - Fu + Etn =0 (3.8a)

On Hole for Insert: Gt - Fu + atH = IuB (3.8b)

where

t and u are traction and displacement vectors on the outer surface of

the composite matrix
tH and o are traction and displacement vectors on the hole

I is the identity matrix

Our goal is to eliminate u? from the system. To this end, equation (3.6)

is written for each node on an insert, collocating slightly outside the

15



insert [where C?j = 0], we obtain
Pt = gtH (3.9)
Post multiplying equation (3.8b) by the F matrix in equation (3.9) yields

FGt = FFu + FGt] = P (3.10)

Equation (3.9) can now be set equal to equation (3.10) and the final form of the

system is derived.

On Matrix: Gt - Pu + GtB =0

On Hole: FGt - FPu + (FG - G)tB = 0 (3.11)

At every point on the outer surface. either the traction or the
displacement is specified and on the surface of the hole only the tractions
are retained. Therefore, the number of equations in the system are equal
to the final number of unknowns, and hence, the system may be solved.
Thereafter, equation (3.8b) is used to determine the displacement on the
matrix/insert interface.

It should be noted that since the displacement about a particular hole
is present only in the insert equation corresponding to that hole,
backsubstitution can be performed one insert at a time in a more efficient
manner than backsubstitution of all inserts at once. Further note that
nowhere in the assembly process is a matrix inversion necessary. This
efficient assembly process was made possible due to the unique formulation
of the modified boundary integral equations developed earlier in this
section.

When the composite matrix is divided into a multi-region model, the
above insert assembly is performed for each region independently.

Thereafter, equilibrium and compatibility conditions are invoked at common

16



interfaces of the substructured matrix composite. After collecting

together the known and unknown boundary quantities, the final system can be

expressed as

APy = By (3.12)

x is the vector of unknown variables at boundary and interface
nodes,
Yy is the vector of known variables, and

AP.Bb are the coefficient matrices

standard numerical procedures can be used to solve the unknowns in

equation (3.12). Details are described in the computer development

section.

3.4 Interior Quantities

Once all the displacements and tractions are known on the matrix
outersurface and on the matrix/insert interface, interior quantities of
displacement, stress and strain can be determined at any point in the
composite matrix or in the insert. For displacement either the
conventiomal boundary displacement integral equation (3.1) or (3.2) can be
employed or alternatively the modified equations (3.3) or (3.5) can be
used.

Equations for strains can be derived from the forementioned
displacement equations and the strain-displacement relations. Thereafter,
equations for stress are obtained by substituting the resulting strain
equations into Hooke's law.

The resulting equations, however, are not only invalid on the surface,
but also difficult to evaluate numerically at points close to it. For

points on the surface, the stresses can be calculated by constructing a

17



local Cartesian coordinate system with the axes 1 and 2 directed along the
tangential directions and the axis 3 in the direction of the outward

normal. The stresses -&ij referred to these local axes (indicated by

overbars) are then given by:
- v < E

v - - E -
‘nTivt3t 2 (eg) + €300 * T3y 11

|
ot

S = = E o+ EX (5. + 2, 4 T
22 "1y 3T _2 i T T+ %22
L (3.13)
o33 = %3
039 = 033 = &y
031 = %3 =%

where E is the Young's modulus, ;ij defines the components of the strains
in the local axes system and Ei are the traction on the boundary. This

method of evaluating the stresses on the surface was originally devised by

(Rizzo and Shippy, 1968).
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4. OOMPUTER PROGRAM DEVELOPMENT

4.1 Introduction

The goal of the computer program developed for ceramic composites is
the accurate and efficient implementation of the formulation described in
Section 3. Of equal importance is the degree of generality required in the
definition of component geometry, loading and material properties. This is
necessary if the program is to be applicable to real problems in the
aerospace industry.

For this reason the ceramic composite formulation has been implemented
in the three-dimensional boundary element computer code BEST3D' (Boundary
Element Stress Technology - Three-dimensional) which was developed for NASA
by Pratt and Whitney and SUNY/Buffalo under contract NAS3-23697. Since its
development, BEST3D has proven itself to be a highly accurate and
numerically efficient boundary element program

The development of the computer program ‘Composite-BEST' is discussed

in the following sections.

4.2 Program Structure

Composite-BEST is designed to be a fully general ceramic composite
analysis system employing the boundary element method. The program is
written using standard FORTRAN 77. Development has been carried out at
SUNY/Buffalo on an HP9000 minicomputer system. The required code and
workspace fit in core without requirement for overlays. The mature of the
method is such that, for any realistic problem, not all required data can
reside simultaneously in core. For this reason extensive use is made of
both sequential and direct access scratch files.

The program first executes an input segment. After the input has been

processed, the surface integrals are calculated and assembled into the set

19



of system equations using specified boundary conditions, followed by the
insert assembly and the inclusion of the insert equations into the general
system. The system matrix is then decomposed and saved on disk, followed
by the calculation of the solution vector. The full displacement and
traction solution on each boundary element and insert element is then
reconstructed from the solution vector. In a time dependent problem the
process of constructing the load vector for the system equations is
repeated at each time step, but the integration, formation and
decomposition of the system matrix are done only once.

Various aspects of the computer program are discussed below.

4.3 Program Input
The input for Composite-BEST is free field. Meaningful keywords are

used to identify data types and to name particular data sets. The input is

divided into five types:

1. Case Control Cards

The case control cards define global characteristics of the problem.
In addition to the problem title, the times for multiple time steps are
defined. The reading or writing of restart data is also defined at this
point. The restart facility allows one to change the arrangements of

fibers without recalculating the various coefficients.

2. Material Property Definition

The material property input allows the definition of material
properties for a variety of materials. The Young’s modulus can be
prescribed in tabular form for a user-defined set of temperatures.

Temperature independent values of Poisson’s ratio are also defined.

20



3. Geometry Input

Geometry input is defined one GMR (generic modeling region, or
subregion) at a time. To initiate the input, a tag is provided to identify
the GMR, a material name and reference temperature are defined to allow
initialization of material properties.

The next block of geometry input consists of the Cartesian coordinates
of the user input points for the outer surface geometry definition of the
composite matrix, together with identifiers (normally positive integers)
for these geometric nodes.

Following the definition of an initial set of nodal points, the
surface connectivity of the outer surface of the composite matrix is
defined through the input of one or more named surfaces. Each surface is
made up of a number of elements, with each element defined in terms of
several geometric nodes. Three sided elements, defined using six rather
than eight geometric nodes, are used for mesh transition purposes. The
terms quadrilateral and triangle are normally used to refer to the eight
and six noded elements, although the real geometry represented is, in
general, a nonplanar surface patch. Seven and nine noded elements are made
available by adding a central node to the six or eight noded elements.

Over each element the variation of displacement and traction can be
defined using either the linear or quadratic shape functions. Linear and
quadratic elements can share a common side, which is then constrained to
have linear displacement and traction variation.

Finally an option is available to allow quadratic functional variation
(8 or 6 nodes) to be used in conjunction with linear geometry (4 or 3
nodes). In this case the program generates the additional nodes
automatically at mid-point of the sides. The characteristics of the

various element types are summarized below.
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Geometry

Surface Element Type Nodes Displacement/Traction Nodes
Linear Guadrilateral 8 or 9 4

Linear Triangle 6 or 7 3

Quadratic Quadrilateral 8 or 9 8 or 9

Quadratic Triangle 6 or 7 6 or 7

Quadratic Quadrilateral 4 8

Quadratic Triangle 3 6

Following the definition for the composite matrix outer surface, the
embedded inserts are then defined. These are defined as curvilinear line
elements with a prescribed radius of cross-section. The inserts are
generally straight, however as noted, curved inserts are also allowed. The
user first defines the nodal coordinates of the centerline of the insert.
Thereafter, the radius and the insert connectivity is defined. Linear and
quadratic elements are available for both geometry and functional
variation, however, cquadratic functional variation over linear geometry is
not presently available. The various options for the insert elements are

summarized below.

Geometry
Insert Element Type Nodes Displacement/Traction Nodes
Linear-Linear 2 2
Quadratic-Linear 3 2
Quadratic-@Quadratic 3 3

Note only the surface of the insert needs to be defined, i.e., the hole in

the composite matrix which encompasses the insert does not have to be

explicitly defined.

4. Interface Conditions

The interface input describes the connection of surfaces or elements
of one composite matrix region to another. Interfaces between the
composite matrix and inserts do not have to be defined. Special types of

interface conditions which are available presently include fully-bonded and
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sliding contact between two GMRs, and springs to other regions. In the
current implementation, fully-bonded connections between the insert and

matrix has been assumed. This will be relaxed in later work.

5. Boundary Condition Input

The final input section provides for the definition of boundary
conditions, as functions of both position and time. Data can be input for
an entire surface, or for a subset (elements or nodes) of a surface. Input
can be in global coordinates, or can define rollers or pressure in the
local coordinate system. Input simplifications are available for the
frequently occurring cases of boundary data which is constant with respect
to space and/or time variation. Each boundary condition set can be defined

at a different set of times.

4.4 Surface Integral Calculation

Following the processing of the input data, the surface integrals
occurring in equations 3.6 and 3.7 are evaluated numerically. This is the
most time consuming portion of the analyses. In Composite-BEST the results
of these integrations are stored as they are calculated, rather than being
assembled into the final equation system immediately. Although this is
somewhat more costly in terms of storage and CPU (central processing unit)
time, it has led to much greater clarity in the writing of Composite-BEST.
In addition, it provides much greater flexibility in the implementation of
various restart and boundary condition options.

The calculations proceed first by GMR (generic modeling region), then
by source point (the equation being constructed) and finally by surface
element and insert element. The results for each source point element pair
are written to disk. All of the calculations are carried out and stored in

the global (Cartesian) coordinate system
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The integration of the BEM equations is the most complex part of the
code. 1In this process either singular or nonsingular integrals can be
encountered. The integrals are singular if the source point for the
equations being constructed lies on the element being integrated.
Otherwise, the integrals are nonsingular, although numerical evaluation is
still difficult if the source point and the element being integrated are
close together.

In both the singular and nonsingular cases Gaussian integration is
used. The basic technique is developed in Banerjee and Butterfield, 1981.
In the nonsingular case an approximate error estimate for the integral was
developed based on the work of Stroud and Secrest (1966). This allows the
determination of element subdivisions and orders of Gaussian integration
which will retain a consistent level of error throughout the structure.
Numerical tests have shown that the use of 3, 4, and § point Gauss rules
provide the best combination of accuracy and efficiency. In the present
code the 4 point rule is used for nonsingular integration, and error is
controlled through element subdivision. The origin of the element
subdivision is taken to be the closest point to the source point on the
element being integrated.

If the source point is very close to the element being integrated, the
use of a unifomm subdivision of the element can lead to excessive computing
time. This frequently happens in the case of aerospace structures, due
either to mesh transitions or to the analysis of thinwalled structures.
In order to improve efficiency. while retaining accuracy, a graded element
subdivision was employed. Based on one-dimensional tests, it was found
that the subelement divisions could be allowed to grow geometrically away
from the origin of the element subdivision. Numerical tests on a complex

three-dimensional problem have shown that a mesh expansion factor as high
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as 4.0 can be employed without significant degradation of accuracy.

In each case of singular integration (source point on the elements
being integrated) the element is first divided into subelements. The
integration over each subelement is carried out using a Jacobian
transformation in mapping. This coordinate transformation produces
nonsingular behavior in all except one of the required integrals. Normal
Gauss rules can then be employed. The remaining integral (that of the
traction kernel Fij times the isoparametric shape function which is 1.0 at
the source point) is still singular, and cannot be numerically evaluated
with reasonable efficiency and accuracy. Its calculation is carried out
indirectly, using the fact that the stresses due to a rigid body
translation are zero (Lachat and Watson, 1976). It has been found that
subdivision in the circumferential direction of a two-dimensional surface
element is required to preserve accuracy in the singular integration of the
outer surface. A maximum included angle of 15 degrees is used.
Subdivision in the radial direction has not been required.

The integrals required for calculation of displacement and stress at
interior or surface points are of the same type as those involved in the
generation of the system equations, except that only nonsingular integrals
are involved. If the source point involved is located on the surface of
the body, then numerical integration is not required. Instead, the
required quantities are calculated using the displacements and tractions on

the element (or elements) containing the source point, as discussed in

Section 3.4.

4.5 System Matrix Assembly
The first step in the assembly process is the reduction of the

rectanqular matrix of F integrals to a square matrix. This matrix is the
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prototype of the system matrix. The columns of this matrix are transformed
or replaced, as required by the boundary conditions, as the assembly
process proceeds.

The next step in the process is the incorporation of the insert
equations in the system. As was described in detail in Section 3.3.3, the
insert assembly consists of an insert by insert matrix multiplication and
backsubstitution. The backsubstitution minimizes the number of equations
required in the system since the displacement about the insert is
eliminated from the system and only tractions are retained.

A key problem in the entire process is the proper definition of
appropriate coordinate systems, on a nodal basis. This is a problem common
to any direct boundary element method which treats structures with
nonsmooth surfaces. It arises because the tractions at a point are not
uniquely determined unless the normal direction to the surface varies
continuously at the point in question.

The original surface integral calculations are all done in global
coordinates. If a displacemert boundary condition is specified at a given
node, in global coordinates, then no new coordinate system definition is
required. It isonly necessary to keep track of the subset of elements,
containing the given node, on which the fixed displacement is to be
reacted. However, if a displacement is specified in a nonglobal direction
at a given node, then a new nodal coordinate system must be defined and,
potentially, updated as further boundary conditions are processed. The
associated nonzero reactions must then be expressed in the new coordinate
system.

Following this preparatory work, the final assembly of the system

equations is carried out. It is performed in three major steps:
1. ‘Transformation of the columns of the matrices to appropriate local
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coordinate systems and incorporation of any boundary conditions

involving springs.

2. Incorporation of compatibility and equilibrium conditions on
interfaces between GMRs. On interfaces between two composite regions
either a completely bonded condition (full displacement compatibilty)
or a sliding condition (only normal displacement compatibility) is
available. At the interface between the insert and matrix a fully

bonded connection has been assumed which will be relaxed later.

3. Application of specified displacements and tractions.

Two particular features of the equation assembly deserve special
comment. First, in multi-GMR problems the system matrix is not full.
Rather, it can be thought of as consisting of an NxN array of submatrices,
each of which is either fully populated or completely zero. Only the
nonzero portions of the system equations are preserved during system matrix
assembly. In order to improve the numerical conditioning of the system
matrix for the solution process, the columns are reordered to number
variable lying on the same interface, but belonging to two different GMRs,
as close together as possible. The rows of the system matrix are placed in
the same order as the columns.

Second, rather than simply assembling an explicit load vector at each
time point in the solution process, load vector coefficient matrices are
assembled and stored. These allow the updating of the load vector at any
required time point simply by interpolating the time dependent boundary
conditions and performing a matrix multiplication. A similar process is

used in the calculation of interior and boundary stresses.
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4.6 System Equation Solution
The solver employed in Composite-BEST operates at the submatrix level,

using software from the LINPACK package (Dongarra, 1979) to carry out all
operations on submatrices. The system matrix is stored, by submatrices, on
a direct access file. The decomposition process is a Gaussian reduction to
upper trianglular (submatrix) form. The row operations required during the
decomposition are stored in the space originally occupied by the lower
triangle of the system matrix. Pivoting of rows within diagonal

submatrices is permitted.

The calculation of the solution vector is carried out by a separate
subroutine, using the decomposed form of the system matrix from the direct
access file. The process of repeated solution, required for problems with

multi-time steps, is highly efficient.
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5. PROGRAM DATA INPUT AND RESULTS
5.1 Input Description
The input to Composite-BEST is presently divided into five sections as

follows:

1. Case control (**CASE control)

2. Material properites (**MATErial property)
3. Generic modeling regions (**GMRegion)

4, Interfaces (**INTErface)

5. Boundary condition sets (**BCSEt)

A detailed description of each of these sections is provided in the
following paragraphs. The interface sections are optional; the other
sections must be input at least once.

Input quantities may be either alphanumeric or numeric (integer,
floating point, E, or D format) as specified and may be up to 16
characters. Individual entries on a card (both keyword and input) must be
separated by at least cne blank space. Input for certain keywords (as
noted) may be continued onto more than one card by repeating the keyword on
the new card(s).

Keywords may be input as shown; minimum input is the the CAPITALIZED
characters. Those keywords which are underscored must always be input.
Reywords shown below are indented to indicate groups of cards to be input
together. However, it is not necessary to indent in this manner.

The current program limits include:

- 20 time points
- 15 generic modeling regions
- 600 elements (300 elements in problems having interior points)

- 2500 nodes (560 nodes per region)
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1.

100 inserts per generic modeling region

500 inserts per problem

1200 source points (600 source points in problems having intericr
points)

302 source points per region in a local coordinate system

99 interface element pairs (total)

350 interface node pairs (total)

60 boundary condition sets with springs

maximum element number of 9999

maximum node number of 9999

maximum of 24 entries per input card

Case Control Input

Type of
Keyword Input Input
**CASE control
TITLe Alphanumeric Case title
RESTart Alphanumeric READ or WRITE
TIMES Numeric Output time value(s)

The analysis is assumed to be static, constant temperature, elastic,

and time independent unless the appropriate optional keyword is input. The

optional keywords need be included only if a particular option is to be

turned on.

material.

The case title should have a maximum of 72 characters.

Input on the TIMEs card may be continued on more than one card

Material Property Input
The material property input section must be repeated for each separate

30



Type of

Keyword Input Input
*sMATErial property
D Alphanumeric Material name
TEMPerature Numeric Temperature value(s)
EMODulus Numeric Young's modulus value(s)
POISson Numeric Poisson’s ratio value

The Young's modulus must be input in the same order as the temperature

values.

Input on the TEMPerature and EMODulus cards may be continued on more
than one card.
NOTE: The elastic modulus of the inserts are defined in the GMR input.

The Poisson Ratio for inserts is taken to be the same as the

Poisson Ratio of the Composite matrix.

3. Generic Modeling Region Input

The generic modeling region section must be repeated for each region.

Type of
Reyword Input Input
**GMR
D Alphanumeric Region name
MAT Alphanumeric Material name
TREFerence Numeric Reference temperature value
POINts
Numeric Node number, coordinate values
(x,y,2)
SURFace Alphanumeric surface name, (reference
surface name)
TYPE Alphanumeric LINE or QUAD
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ELEMents

Numeric Element number, node numbers
NORMal Alphanumeric Element number, + or -
INSErt Numeric Elastic modulus of insert
POINtS
Numeric Node number, coordinate value
(x,y,2)
TYPE Alphanumeric LINEar or QUAD
ELEMent
Numeric Element number, radius of
insert element, node numbers
INTErior aAlphanumeric
POINts

Numeric Point number, coordinate
values (x,y,z) for interior
sampling points

The SURFace input may be either of two forms:

- a TYPE card and an ELEMents card to define element connectivity

The TYPE designation in SURFace input specifies the traction or
displacement variation on the element. A surface may contain only one TYPE
card Therefore, if mixed variation is required in a region, two surfaces
must be defined.

Surface elements must have either 6 or 7 (triangles) or 8 or 9
(quadrilaterals) nodes. Element numbering is consecutive around the
boundary .

Insert elements must have either 2 (linear) or 3 (quadratic) nodes.
Nodes referenced in element connectivity must be explicitly defined under
'insert’ POINt card and the points should not intersect the outer boundary
or other insert elements.

The sign associated with the defining element on the NORMal card

should be plus (+) if the element is numbered in a counterclockwise

32



direction as seen from the outside of the model or minus (-) if it is
nurbered in a clockwise direction. Disjoint boundaries must have multiple
element/sign pairs on the NORMal card.

The points which are input in the INTERior input are treated as
""interior'’ points. These points may be either nodal points, other

surface points, or true interior points.

4. Interface Input

The interface input describes the connection of surfaces (or elements
or points) of one composite matrix region to another. Interfaces between
the composite matrix and inserts do not have to be defined.

The interface section must be repeated for each interface.

Type of
Keyword Input Input
**INTErface
R Alphanumeric Region name of first region
SURFace Alphanumeric Surface neme in first region
ELEMents Numeric Element number(s) in first
region
POINts Numeric Node number(s) in first region
GMR Alphanumeric Region name of second region
SURFace Alphanumeric Surface name in second region
ELEments Numeric Element number(s) in second
region
POINtS Numeric Element number(s) in second
region
SLIDing

The interface is assumed to have complete displacement compatibility
unless a SLIDing card is input, in which case only normal displacement

compatibility is assumed.
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The ELEMents card and/or the POINts card are included in SURFace input

only to designate a subset of that surface.

Input on the ELEMents and POINts cards may be continued on more than

one card.

5. Boundary Condition Set Input

The boundary condition set section must be repeated for each new

boundary condition.

Reyword
**BCOEL

GMR
VALUe
RELAtion
SURFace
ELEMents
POINts
TIMESs
LOCAl
GMR
SURFace
ELEMents
POINts

DISPLacement

SPLIst

-3

RIGId

SPRINng

Type of
Input

Alphanumeric

Alphanumeric

Alphanumeric
Numeric
Numeric

Numeric

Alphanumeric
Alphanumeric
Numeric
Numeric
tNumeric

Numeric

Numeric

Numeric

Numeric
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Boundary condition set name

Region name

Surface name
Element number(s)
Node number (s)

Input time value(s)

Region name
Surface name
Element number (s)
Node number (s)
Component value

Source point value(s) or ALL
or SAME

Time point identifier, dis-
placement value(s)

Component value

Component value, spring value



TRACtion

SPLIst Numeric Source point value(s) gor ALL
or SAME
T Numeric Time point identifier, trac-

tion value(s)

The ELEMents card and/or the POINts card are included in SURFace input
only to designate a subset of that surface.

The TIMEs card must be omitted in a boundary condition set which
contains a RIGIA card. If the value(s) on the TIMEs card differ from those
values in the case control input, the output is calculatd by linear
interpolation. In the case of time independence (i.e., the TIMEs card is
omitted) the time point identifier on the T card must be 1 (one).

The LOCALl card designates input in the outward normal direction. The
component value on the DISPLacement, RIGId, SPRIng, or TRACtion card must
be 1 (one). Care must be taken not to mix global and local coordinate
systems on a particular element. Care must also be taken not to input
conflicting components on a particular node in a particular element.

The VALUe card should be included with the DISPlacement card, the
RIGIA card, or the TRACtion card. The RELAtion card should be included
with the SPRIng card.

Either RIGIA input, or SPRIng input, or TRACtion input must be
included in a boundary condition set. This input set may be included up to
three times (once for each component) in a boundary condition set.
However, different boundary condition types may not be mixed in a boundary
condition set.

The SPLIst card indicates the order in which the values are to be

input on the T cards. The input may be in either of three forms:
- nodal values
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- ALL to indicate that a single constant value is to be input
- SAME to use the previous source point list within the current
toundary condition set (this option may not be used for the first

source point list in the current boundary condition set).

Input on the ELEMents, POINts, SPLIst, and TIMEs cards may be
continued on more than one card. Input on the T card may be continued on

more than one card, including the time point identifier on each card.
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5.2 Sample Input

The following pages contain a sample data input for Composite-BEST for
a cube with five inserts in tension. Note the simplicity of the input
section for inserts. Each insert may contain a number of linear or
quadratic elements. The keyword ELEMents is used before the definition of

each distinct (non-connected) insert.

AXCASE
TITLE CUBE HITH INSERT UNDER TEHNSION
TIMES 1.
RESTART WRITE
AAMATE
ID MATH
TEMP 70.0
EHOD 100.
POIS 0.3
*AGMR
ID GMR1
HAT MATH
TREF 70.0
POINTS
1 . 0000 . 0000 . 0000
2 . 5000 . 0000 . 0000
3 1.0000 . 0000 . goago
4 1.0000 . 5000 . 0000
S 1.0000 t. 0000 . 0000
6 . 5000 1.0000 . 0000
7 . 0000 1.0000 . 0000
8 . 000N . 5000 . 0000
1001 .00no0 . 0000 . 5000
1002 . 5000 .0Noo . 5000
1003 1.0000 . 0000 . 5000
1004 1.0000 . 5000 . 5000
1005 1.0000 1.0000 . 5000
1006 . 5000 1.0000 . 5000
1007 . 0000 1.0000 .5000
1008 . 0000 .S0N0 . 5000
2001 . 0000 . 0000 1.0000
2002 . 5000 .0noo 1.0000
2003 1.0000 . 0000 1.0000
2004 1.0000 .5000 1.0000
2005 1.0000 1.0000 1.0000
2006 . 5000 1.0000 1.0000
2007 . 0000 1.0000 1.0000
2008 . 0000 . 5000 1.0000
SURFACE SURF11
TYPE QUAD
ELEMENTS
101 1 2 3 1003 2003 2002 2001 1001 1002
102 3 4 5 1005 2005 2004 2003 1003 1004
103 5 6 7 1007 2007 2006 2005 1005 1006
104 7 8 1 1001 2001 2008 2007 1007 1008
1 1 2 3 4 5 6 7 8
201 2001 2002 2003 2004 2005 2006 2007 2008
NORMAL 201 ¢
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INSERT 1000,

POINTS
3oo01 0.5 0.5 0.
3002 0.5 0.5 0.125
3003 0.5 0.5 0. 25
3004 0.5 0.5 0.5
3005 0.5 0.5 0.75
3006 0.5 0.5 0.875
3oo7? 0.5 0.5 1.0
TYPE QOUAD

ELEMENTS

301 R 3ooHd 3002 3003
302 .1 3003 3004 3005
303 .1 3005 3006 3007

INTERIOR
POINTS
9002 .5 .1 0.5
gn004 .5 .2 0.5
9006 .5 .3 0.5
9007 .5 .35 0.5
¢0t10 .5 .375 0.5
**BCSET
ID BCH
GMR  GMR1

SURFACE SURF11
ELEMENTS 104

pIsp 1
SPLIST ALL
T 1 0.0
A**BCSET
ID BC2
GMR  GHR1

SURFACE SURF11
ELEMENTS 104
POINTS 100t 1007

pIsp 3
SPLIST 1001 1007

T 1 0. 0.
**BCSET

ID BC3

GMR  GMR1

SURFACE SURF11
ELEMENTS 104
POINTS 8 2008

DISP 2
SPLIST 8 2008

T 1 0. O.
**BCSET

ID BC4

GMR GMR1

SURFACE SURF11
ELEMENTS 102
TRAC 1
SPLIST ALL

T 1 100.0
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5.3 Output Description
The output from Composite-BEST is relatively straightforward. It

consists of ten sections, as follows:

10.

Complete echo of the input data set.
Summary of case control and material property input.
Complete definition for each GMR, including all surface insert nodes,

surface and insert elements.
Complete summary for each interface and boundary condition set,
including the elements and nodes affected.

Boundary solution (on an element basis), including displacements and
tractions at each node of each element.

The resultant load on each element and on the entire GMR is calculated
and printed.

Solution for the displacements and tractions at the Insert/Matrix
composite interface (on an element basis).

Displacement, stress and strain on a nodal basis, at all surface
nodes, for each GMR.

Displacements at interior nodes.

Stresses at interior nodes.

A sample output is shown on the following pages for the data input

that was given in Section 5.2.
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5.4 Sample Output

asxs CASE CONTROL INPOT #hns

JOB TITLE CUBE WITR INSEAT NWMDER TE
TIHES FOR SOLUTION: 1.00000000
BOUNDARY RESTART 1
BONMDARY INTENPATION EPSILON:

INTERIOR INTEGRATION EPSILON:

AAAA MATERIAL INPUT mA#%

KATERIAL NAME: WATH

ELASTIC
POISSONS RATIO: . o000
TENP ALPRA
. 70000E+02 . 000Q0E+00

RAAA OMR INPNT ARAA

REGLON !
NAME CMRY RATERIAL MAT
PEFERENCE TEMPERATORE 70. 00
IRITIAL TEMPERATORE OF GMR .00
NODES 57 ELEMENTS
SONRCE POINMNTS 45 CELLS 0
MIHBER OF INSERTS 1
COORDINATE L13T
NODE X Y 2
1 . 00g0 . 0000 . 0000
2 . $000 . pogo . 0000
3 1. 00n0 . 0000 . 0000
4 t.0000 . 5000 . 0000
L] 1.0000 1.0000 . 0000
6 . 5000 1.0000 . 0000
7 . 0000 1. 0000 . 0000
L} . 0000 . 5000 . 0000
1001 . 0000 . 0000 . 5000
1002 . 5000 . 0000 . 5000
1001 1. 0000 o000 . 5000
1004 1.0000 . 5000 . 5000
1005 1.0000 1. 0000 . 5000
1006 . 5000 1.0000 . 5000
1007 . ooon 1.0000 . 5000
1004 . 0000 . %000 . 5000
2001 . 0000 . 0000 1.0000
2002 . 5000 . gooo 1.0000
200) 1. 0000 . 0000 t.0000

¥ aldp YY) ;
CRIQENL. Fo3E 18
% Ty -, i 4"
OF POLR QUALITY
NSION
. 00100000
.g0100N00
E
. 10000E+0)
'
6 SURFACFS 1
ROLE ELEMENTS [

INSERT ELEMENTS 3
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2004 1. 0000 . S000 1.0000
2005 1. 0000 1. 0000 1. 0000
2006 . 5000 1.0000 1.0000
2007 . 0000 1.0000 1.0000
2008 . 0000 . 5000 1.0000
300t . 5000 . 5000 . 0000
3002 . 5000 . 5000 . 1250
Jjoos . 5000 . 5000 . 2500
3004 . 5000 . 5000 . 5000
3005 . 5000 . 5000 . 7500
3006 . 5000 . 5000 . 8750
3007 . 5000 . 5000 1.0000
2002 . 5000 . 1000 . 5000
2004 . 5000 . 2000 . 5000
9006 sono . 31000 . Sg00
9007 . 5000 . 3500 . 5000
9010 . 5000 . 3750 . $000
COORDINATE LIST OF NODE3S GENERATED BY GPBEST
HODE X Y z
73001 . 5¢c00 .60n0 . 0250
73002 . 5000 . 6000 .12%0
73001 . 5000 . 60N0 . 2500
73004 . 5000 . 60N0 . 5000
73005 . 5000 . 6000 . 7500
73008 . Sono . 6000 . 8750
73007 . 5000 . 6000 . 9750
8300! .43 . 4500 .02%¢0
83002 REARY] . 4500 . 1250
81001 RART] . 4500 2500
R1004 REART . 4500 . 5000
83008 413 . 4500 . 7500
83008 L4134 . 4500 .87%0
831007 REARE! . 4500 . 9750
83001 . 5865 . 4500 .02%0
91002 . 5866 . 4500 L1250
Q10N . 5865 4500 . 2500
93004 L5066 . 4500 . 5000
931003 1LY 1500 1500
21006 . SRER . 4500 8750
a31007 . SAKA . 4500 9750
STRFACE SORF11 OUADRATIC SARIATION
ELEMENT NONES
10t 2 3 1001 2003
102 3 4 ] 1005 200%
101 5 L] ? mno- 2007
o4 ? 8 1 100t 2004
1 1 8 ? ] ]
201 2001 2002 2001 2004 2005
INSERT ELEWENTS OYADRATIC FARIATIONM
ELASTIC HOONLOS OF INSERTS | 100000E+04
FLENENT RADINS NODES
{ INSERY 1)
3o . t0o0 N 1002 3003
in2 .mnoen 300 004 3005
joz 1ono0 3005 joos 31007
SO00RCE POIMNT LIST
1 2 k] 4 H 6 7 8 100t
20015 2006 2067 2008 73001 RIOOY 9300
R1006 93006 731007 83007 93007

ORIGINAL FAGE 'S
OF POOR QUALITY

2002
2004
2006
2008

2006

1002

2001
2003
2009
2007

2007

1003

1001
1003
1005
1007

2008

toot

1002
1004
1006
1008

1005

1006

1007

1009

1 73002 83002 91002 73003 83003 91003 73004 83004 93004
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ORI, PAGEL ©

OF POOR QUALITY

#asa BONNDARY CONDITION ITNPUT Ana*
GHMR GMRI SDAFACE SURF1!

ELEMENT LISY
104

SOORCE POINT LISY
? 9 y toc1 200! 2008 2007 1007 1008

COMPONENT ' DISPLACEMENT INPOT
QATA VALDES:

. 00000E+0D 00000E+00 . 0GD00E*Q0 . 00000E+00 . 00000F+00 . 00000E+00
. 00000E+00

aasa POOUNDARY CONDITION [HPUT AArn
NHR CHRY SNRFACE SURFHY

ELFMFNT LIST
104

SGNRCE POINT LIST
to01 1007

CONPONVHT 3 DISPLACEMENT INPOT
DATA VALDES:
. 00000E+00 . 00000E+00
ARAA BOONNARY CONDITION INPOT AARR

GHR GHR1 SOURFACE SURFY)

ELEMENT LIST
104

SOURCE POINT LIST
A 2008

CONPONENT 2 DISPLACENENT INPUT
PATA VALUFS:
. 00000E+0Q0 . 00D0NE+CO
axan BOUMDARY CONDITION INPAT RAAA

NMR GHR1 SURFACE SURFIY

ELEMENT LIST
102

SOYRCE POTNT LIST
] 4 « 1005 2005 2004 2003 1003 tOQd

COHPONENT 1 TRACTION INPOT

DATA VALUES

10000E¢03 .10000£+03 . 10000£+0) . 10000F+03 . 10N00E+03 .10000E+03
. 10000E+03
MATRIX DECOMPOSTTION - DIAGONAL BLOCK 1
CONDITION NUMBER L13387E+0R
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ORIGINAL. PAGE 1S
OF POOR QUALITY

JOB TITLE: CUBE WITH INSERT UNDER TENSION
BOONDARY SOLUTION AT TIME = 1.0000 FOR REQIONM = OMRY
ELEMENT NODE NO. X-DISPL. Y-DISPL. Z-DISPL. I-TRAC. Y TRAC. T TRAC
101 1 . 00N0CE+Q0 .15593€+00 .13754E+00 . 00000E+00 . 00000E¢00 . 0NDOQE+00
101 2 . 48021E+00 .12997E+00 .13 9E+00 . 00000E+00 . Q0000E+00 . Q0000E+DN
101 3 . 9886RE+00 .17094E+00 . 14960E+00 . 0000QE+00 . 00G00E+ 0D . 00000E+00
101 10023 .97531E+00 .17747€+00 . 32046E-06 . 00000E+00 . 00000E*00 . 00000E+00
101 2003 . 98866E+00 . 17094E00 - . 14260E+00 . 00000€+00 . 00000F+00 . 00000E+00
101 2002 L 4AN21E0N . 12997E+00 - 13410E+00 . 00000E*00 . 00000E+00 . 00000E+ON
101 200t . 00090E*00 . 15593€E+00 - . 13754€+00 . 00000E+00 . 00000E*00 . 00000E+0D
109 100t . 00000E+Q0 L 15477Es00 . 0000QE+00 . 00000E+00 . 00000E+00 . 00000E+00
101 1002 . 47753E+00 . 13734E+00 .57255E-06 . 00000E+00 . 00000E+00 . 00000E+00
102 3 . 98866E+00 . 17094E+00 .14960E+00 . 10000E+02 . 00000E+ 00 . 00000E+00
102 4 .93793E+00 -.14762E-02 .13883E+00 . Y0000E+03 . 00000E+0D . 00000E+00
102 H] . 98891E+00 ~. 17426E+00 .14839E+00 . 10000E+0) . 000N0E+Q0 . 00000E*00
102 1005 . 97555E+00 - . 17932€E+00 .15470E-06 . 10000€+0) . 00000E+0D . 00000E0N
102 2005 . 98831 E+00 = V7426E+00 . 14839E+00 . 10000E+0) . 00000E+00 . 00000E+GD
102 2004 .931793E¢+00 -. Y4761E-02 ~. 13883E00 . 10000£+0)3 . 00000E 00 . D0000E+00
102 2003 . 98866E* Q0 . 17094E+00 - t4960E+00 . Y0000€+0) . 00C000E+00 00000E+00
102 1003 . 97531E400 .177¢7€+00 . 32046E-06 . 10000E*0) . 00000E+00 . 00000E+00
102 1004 .92675E+00 -. 72162E-03 . 4S097E-06 . 10000E+0) . 00000E+00 . 00000E+ QO
103 S . 2R891E+00 -. 17426E+00 . 14839E+00 . 00000E¢00 . 00000E+00 . 00000E+00
103 6 . 48072E+00 =, 13313E+00 .13248E+00 . 00000£+00 . 00000E+QD . 00000E+*Q0
103 ? . 00000E+00 -. 15675€+00 . 131696E+00 . 00000E+00 . 00000E+00 . 0N000ECD
103 tgo? . 0N000CE+QD -. 15487E+00 . 0000NE+00 . Q0000E+00 . 00000E*00 . 00000EsD0
101 2007 . 00000E+00 - 15675E+00 = 13696E+00 . 0000CGE+00 . 00000E+0D . G0000E+00
103 2006 . 48072EC0 =, 13313€E+00 ~.13247€00 . 00000E+00 . 00000E+ 0D . QONQOEQOO
103 2005 . 9ARIIELOD ~. t7426E+00 =. 148)9E+00 . 00000F+00 . 00000E*00 00000E+N0
103 1005 9756SE+0D -, 17922€+00 .15470E-06 . 00000E+00 . 00000E+00 . 00000E+00
to3 1006 . 47808Es00 =.13787E+00 C47841E-06 . DOO00E+00 . 00000E+00 . 00D00QE+00
104 ? . 000Q0E+00 - . 1567%€E+00 . 11896E+00 - BIRICE+O2 . 09000E+00 00CO0NE 0N
104 8 . 00000E+00 00N0CE+N0 CH4B14ELD0 = 10162E+03 L 18829E00 QPOO0E'00
104 1 . 00000E+*90 . 15593)E+00 . 137S4E4N0 - 89513E+02 . 0C000E+00 . 00000E+ N0
104 1004 . 0NN00E+00 . 15477E400 . 0000NE+Q0 - 89B10E+02 . DOOORE+DN - INSTEE-N
104 2001 . 00000E+00 .15593E+00 -. 11754E+00 -.89513E+02 . 0000NE+00 .00000E+n9
104 2008 . 00000E+Q0 . 00000E+00 ~. 14814E+00 - 10162E+0) . V8820E:00 . 0NC00E+ 00
104 2007 . 0000NE+G0 - 15675E+00 - 11596E+:00 -. 89816E+02 . 00000E+00 . 00000E: 00
104 1007 . 00000E+00 - t5487E+20 . 00000E: 00 -. 90021E+02 . 00000E+00 -.94070E M4
10¢ 1008 . 00000E+00 .89522E-04 . S0108E-06 ~. 10605E+03 . 00000E+0D . 00000E+00
JOoB TITLE: CUBE NITH TMSERT UNCER TENSION
BOUYNDARY SOLOTION AT TINE = 1. 0000 FOR REGION = OMR%
ELEMENT NODE NO. X-DISPL. Y-DISPL. Z-DISPL. X-TRAC. Y TRAC Z TRAC
1 1 . 00000E+00 . 15593E300 . 117S4E+00 . 00000E+00 . 000Q0E+00 0000QCE:00
1 8 . 00000E+D0 . 00000E+00D L V4814E+00 . 00000€+00 . 00000E*00 . 00000€E: 00
1 7 . 00000EY00 ~. 1567SE+00 . 13696E+00 . 00000E+00 . 0060G0E+00 . 00000E+ NG
1 6 . 48072E4+00 = 1INJENn L 1I248E400 . 00000E+00 00000E+00 . Q0000E: 00
1 5 .98891E+00 ~. 17426E+00 . 14¢839E+00 . Q0000E+00 . DODOCE+ DO . 000600E00
1 4 . 23703E+00 = 14762E-02 . 118RIE+GO . 00000E+CO . 00000E*00 . 00000F 00
1 3 . 99BG6EE+0O . 17094E+00 . 149A0E+ 00 0000CE+Q0 . 00000E+00 . 00000E*D0
1 2 . 4B021E+00 . 12997E+00 . 13419E+0D . 00000F+00 . 00000E+0Q . 00000E* 00
204 2001 . 0BODOE+00 . 15503E+00 - . 131754E00 . 00000E+00 . 0000NE 00 . Q00NOCE+ Q0
201 2002 . 48021E+Q0 .12997E+00 = 11412E+00 . 00000€00 . 00000E+00 000Q0E*ND
20¢ 2002 . 98865E+00 . 17094E300 - 14960E¢00 . 0000QE+00 . 00000E00 . 00000E+00
201 2004 L 937Q1EL0N = 14761E-02 - 11881E+00 .00000E+00 . 00000E+00 . 0000NE+O0
201 2005 . 98891E+00 ~. 17425E+00 =. 14330E+00 . 00000E+00 . 00000E: 00 . 00000E+00
20 2006 . 4RA072E+00 =, 13312E+00 =.11247E+00 . 00000E+00 . 00000E+*00 . 00000E0N
201 2007 . 00000E*00 - 15675E+00 -~ 1M696E+00 . 00D0CE+0OD . 00000E+0Q0 . Q0000E+ 00
20t 2008 . 00000E+00 . 00000E+00 . Y4814E+00 . 0000CE+00 . 00000E+00 . Q000NE+00
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ELEMENT

jos
301
101
yo1
3ot
i
30
301
301

o2
302
302
02
02
02
302
j02
j02

301
Yol
303
30
103
303
103
303
303

NODE

02
eont
2004
9007
9010

NODE

0002
2004
2006
9007
8010

A
Y
a2

i

;f;{i;?t ?E;

OF POOR QUALITY

Ui
JOB TITLE: CUBE RITR INSERT UNDER TENSION
LOAD CALCOLATION AT TIKE = 1.000000
LOADS FOR REGION GMR1
ELEHENT X Y 2
101 . 00000E+00 . 000N0E+0D . 00000E+00
102 .10000E+0) . 00000E+00 . 00000E+00
103 . 00000E+00 . 00000E*00 . 00000E+00
104 -.99659E+02 .41842E-01 -, 22136E-01
1 . 00000E+00 . 00000E+00 . 00000E+00
201 . 00000E+00 . 00000E+00 . 00000E+00
LOAD BALANCE . 34022E+00 . 41B42E-OF - 22136E-02
Jos TITLE: CHBE RITA INSERT UNDER TENSION
INSERT ELEMENT SOLUTION AT TIME = 1.0000 FOR REGION = GNA1
NODE MO. I-TRAC. Y TRAC. T TRAC
73001 . B9S3I2E+0QN .10010E: 01 -. 4S449E*02
83004 . 12852E+0) -.69704E+01 - 49540E+02
92100 .12607E4+03 =, 73IS9IErOY -.50428E402
73002 . 72226E400 . 96271E+0D!Y -.10079E+02
83002 .11868E+D3 -. 2854FE+0Y ~.77024€+0!
93002 . 11989E+03 -.29981E+01 -.83725E'0
73001 . 297441200 . 4808SE01 ~. 74877E+0"
83001 .t1B74E0) = A7167E01 -. 88872E+01
93003 . t1B74E0) ~. 20814E+01 ~. 82263E¢01
73007 . 29744 E+00 . 48065E+01 - 74677E01
83003 L11874E4+0 - 17167€+01 ~. BAS72E+01
9300} L1EB874E+0) -. 20844E+OY -.82263E01
73004 . 14592€400 . 648BEEDY .27555¢2-0)
830018 L11796E+40) -. 24306E00! . 22600E-0)
93004 LAY 746E+D) -. 28693E+01 . 36406E-0)
71005 . 29706E+00 . 48068E+01 L 7A674EOY
8300$ .11874E+0) ~. 17166E°0" . B8S7SE+OY
93005 . T1874E+0) -. 20819E+01 . A2249E+0"
73008 . 29706E00 . 4806BE+0Y L 74ET4E0Y
8100% L11874E+0] - . 17166E+0" . B8575E+0"
33005 L11874E4D3 ~. 20819F+0% . B2249E+01
73006 . 72447E+0D0 .96234E+0Y .{ORB5E+02
83006 L 11868E+03 -, 2BS3QErOY .7TD65E401
83006 L 11989E+03 - 29956E+01 .83916E+01
73007 . RA9NEEL00 .10028E¢01 L 4543°Es02
83007 . t2852E+0) - 69699E+01 L 49527E+02
Q3007 .12607E+03 -, 7I594E+0t .S0416E+02
JOB TITLE: CHBE RITH INSERT UNDER TEN3ION

INTERIOR DISPLACEMENT AT TIME =

X DISPLACENENT

. 475S66E+00
. 4730093E+00
. 470797E+00
. 4699S4ELO0D
. 4696228400

JOB TITLE:

INTERIOR STRESS AT TIHE =

SIGMA-IX

.9970317E+02
.101083E*0)
L106541E+03
.112658E+03
.118245E+0)

Y DISPLACEHENT

1.0000

Z DISPLACENENT

.10S777E+00 .636808E-06
LT27407E-O0 . 76S9R0E-28
. 362568E-01 L 97002S5E-06
CIRTBT9E-0Y . 114285E-05
.676120E-02 L 1252M4E-05
CUBE RITR INSERT UNDER TENSION
1.0000 FOR REGIORN =
SIGHA-YY SIGHMA-22
41931 EV00 -, 222586E+01
.131692E+00 S JAMEON
. 294053E-02 =, 422035E+0¢
-, 840790E-01 =, 451955E+01
-.351612E+00 ~. 448963E+01
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FCP REGION = GMR1

GMR1

TAO-XY

-.B74776E+01
-. 832383E+01
-, 725681E+01
-.636016E+0"
-. 550159£+09

TAD-X2

.627RS0E+0Y
. 512032E+01
.375619E+01
.329212€+01
. 323272E400

TAT-YZ

L 6TS4BRECY
.624766E+ 0
.$520628E:0¢
. 42408308E+0"
L ASEI46E+D!



6. EXAMPLES OP QOMPOSITE INSERT ANALYSIS
6.1 Introduction

In this section a number of examples are presented to verify and
demonstrate the applications of the ceramic composite formulation for
elastic fully-bonded inserts.

In the mesh diagrams of the models containing the inserts, a double
line is used to indicate the centerline of the insert elements. The length
of these segments are shown in proper proportion for the three-dimensional
views, however, the radii of the inserts are not indicated on these
diagrams. The double line is a symbolic representation of the insert
elements and does not in any way indicate the diameter of the insert.
Refer to the example description for the values of the radii.

Throughout this section consistent units are used in the definition of
the examples. This means all lengths are defined in the same units and the
tractions and the elastic moduli are defined in terms of these lengths as

Force/ lengthz. No confusion should arise since the results are reported as

non-dimensional quantities.

6.2 Cube With a Single Insert

The first test of the formulation is on a unit cube with a single
insert through its center of radius 0.1. The cube is subjected to tension
and shear in the direction parallel and perpendicular to the insert. The
cube has a modulus of 100.0 and a Poisson ratio of 0.3. Consistent units
are used for all information described in this problem. An insert with two
different moduli of 1,000 and 10,000 is studied. The Poisson ratio of the
insert is assumed to be the same as that of the cube.

The problem is analyzed by both the present formulation and by a full
three-dimensional multi-region BEM approach. As shown in Fig. 6.2.1, the

model for the insert formulation consists of fourteen quadratic boundary
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elements and the insert contains three quadratic insert elements. The two-
region, three-dimensional model shown in Fig. 6.2.2 contain twenty
quadratic boundary elements in the first region and sixteen in the second.
Note 9-noded elements are used in describing the insert and hole to
accurately capture the curvilinear geometry.

In Fig. 6.2.3, the profile of the end displacement of the cube under a
uniform normal traction of 100.0 (in parallel with the insert) is shown.
The present formulation is in good agreement with the full three-
dimensional results for Ei/E = 10. For the case Ei/E = 100, the insert
formulation exhibits greater stiffness than the 3-D results. This
difference is contributed by the way the load is distributed from the
insert to the composite matrix. In the full 3-D model, the applied
traction and the resulting reactions at the fixed end act directly on the
end of the insert. In the composite formulation, the insert is assumed not
to intersect the boundary surface and therefore the insert is moved back
slightly from the end of the cube. The load is therefore transferred
through the composite matrix to the end of the insert and to its sides in a
manner that is slightly different from the full 3-D analysis.

In Fig. 6.2.4, the stress distribution through the center of the cube
(from A to B as indicated in the figure) is shown. Again the results are
very good for Ei/E = 10, and deviates slightly from the full 3-D results in
the second case.

In Figs 6.2.5 and 6.2.6, the lateral displacements along the side of
the cube are shown for a cube subjected to a shear traction of 100. For
the case of applied shear perpendicular to the insert (Fig. 6.2.5), the
results for both the insert and full 3-D model show good agreement. Once
again a slight deviation is observed for Ei/E = 100. In the case of the

shear traction in the plane of the insert (Fig. 6.2.6) the insert has
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little effect on the displacement (as anticipated) and all results fall in

close proximity.

6.3 Lateral Behavior of a Cube With Multiple Inserts

Existing methods of analysis of composite material based on mechanics
of materials have been relatively successful in predicting the behavior of
composite material for loading in the longitudinal direction. The
properties perpendicular to the direction of the fibers are not so readily
predictable by present means. The focus of the present example concerns

this lateral behavior.

Four cubes (Fig. 6.3.1) with one, two, five and nine inserts are fixed
with a roller boundary condition on one side and subjected to a uniform
traction, perpendicular to the inserts. The material properties, given in

consistent units, are

ginsert _ 14000. gratrix _ 440,

vinsert - 0.3 Jmatrix _ g 3

For the cube with one and two inserts, the boundary mesh consists of
two quadratic surface elements on each lateral side and four elements on
the top and bottom. For the cubes with five and nine inserts, one
additional element was added to the side with the applied traction and to
the side with the roller boundary condition. The top and bottom faces
contain six elements to match the pattern of the sides. In all cases, each
insert contained three one-dimensional quadratic elements.

The profile for the end displacement for a cube with one insert and
five inserts are shown in Figs. 6.3.2 and 6.3.3. The results seem to be in
good agreement with the two-dimensional results. The 2-D results are

approximations since plane stress is assumed. The 3-D solutions for the
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one insert are within 2% error of the 2-D solution and within 3% for the
case of 5 inserts.

Also shown in Fig. 6.3.4 are the average ené displacements for the
one, twe, five and nine inserts. Results show good agreement with 2-D
results. For one, two and five inserts, the solutions are within 2% error
of the 2-D results and 6% for the case of nine inserts where the insert of
volume to total volume ratio is 28.2%. The result is also displayed in a
plot of Effective Modulus vs. Insert Volume Ratio in Fig. 6.2.5. The
effective modulus is defined as the average stress/average strain. The

three-dimensional results follow closely to the two-dimensional solution.

6.4 Thick Cylinder With Circumferential Insert Supports

The strength of a cylinder under internal pressure can be increased by
adding stiff circumferential insert supports. In the present example, a
three-dimensional, open ended thick cylinder with four inserts is analyzed.
The inner and outer radii of the cylinder are 10 and 20 respectively, the
thickness is 2 and the radius of the fully-bonded inserts is 0.5. By using
roller boundary conditions on the faces of symmetry, only a fifteen degree
slice of the thick cylinder needs to be modeled. As shown in Fig. 6.4.1,
sixteen eight-noded quadratic boundary elements are used to define the
sides of the model, a nine-noded element is used on both the internal and
external faces of the cylinder, and three insert elements are used per
insert. WNote, the inserts in this problem are curvilinear in geometry.
The elastic modulus of the cylinder is assumed to be 100, and the effect of
inserts with five different moduli of 100, 250, 500, 750 and 1000 is
studied. The Poisson ratio is 0.3 for both the composite matrix and insert,
and the internal pressure in the cylinder is 100.

Results from a multi-region, axisymmetric BEM analysis were used for

comparison with the 3-D insert results of the present example. The
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axisymmetric model consists of twenty quadratic boundary elements on the
outer surface, and six boundary elements per hole and per insert (Fig.
6.4.2). The radial displacement through the thick cylinder along the top
face is shown in Fig. 6.4.3 for all five moduli. The displacement for the
composites with low Ei/E ratios are in good agreement with the axisymmetric
results, and diverge slightly for higher Ei/E ratios. InFig. 6.4.4, the
circumferential stress is shown for the same points along the top edge.
This stress is smooth for the homogeneous case (Ei/E = 1.0) and exhibits
increasing fluctuations as the Ei/E ratio increases and the inserts take on
more of the load. The circumferential stress of the 3-D insert model is in
good agreement with the axisymmetric results for all cases. In Fig. 6.4.5,
the radial stress is displayed for the two models. The inserts have little
effect on this stress and the curves for the five moduli fall close

together for both approaches.

6.5 Cube With Multiple Inserts With Random Orientation

In an attempt to analyze a material with a random fiber structure,
cubes with multiple inserts oriented in random directions are studied. The
cubes are of unit length and have four boundary elements per side (Fig.
6.5.1a). Randomly oriented fibers of variable length with radii of 0.05
are placed in five cubes in quantities of 5, 10, 15, 20, and 25 (Fig.
6.5.1b-f). Three cases of material properties are considered for each
cube. The modulus of the composite matrix is 100 for all cases, however,
the modulus of the inserts are 500, 10,000 and 200,000 in the three cases
studied. Poisson's ratio is uniformly 0.3 throughout. Roller boundary
conditions are employed on three adjacent sides and a uniform normal
traction of 100 is applied to a fourth face.

The normal end displacement at the center of the face on the side with
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the applied traction is plotted against the rumber of inserts in a cube for
the three materials (Fig. 6.5.2). The displacement decreases with

increasing number of inserts per cube and increasing Ei/E values as

expected.

6.6 A Beam With Insert Reinforcement in Bending

In the last example, the applicability of the present formulation to
the study of the micromechanical behavior of the ceramic composite is
apparent. The present formulation, however, is equally applicable to
typical problems encountered by civil engineers. Using Composite-BEST
reinforced concrete can now be modeled exactly as a three-dimensional body
and studied in detail for the first time. The present example considers a
reinforced concrete beam. Here the concrete plays the role of the
composite matrix and the reinforcement bars play the role of the fiber
insert. In Fig. 6.6.1, a 4x1x1 beam with four inserts is modeled using
twenty-eight quadratic boundary elements. The ratio of insert modulus to
matrix modulus (Ei/E) is studied for a range of valves between 1 and 100.
The Poisson ratio is 0.3 for both the beam and reinforced rods.

The beam is completely fixed at one end and a downward shear traction
of 100 is applied to the other end. The non-dimensional vertical
displacement of the end obtained from the analysis is shown in Fig. 6.6.2
as a function of Ei/E. The non-dimensional displacement is defined here as
the end displacement of the reinforced beam divided by the displacement of
a homogeneous beam under similar conditions.

The end displacement obtained from the mechanics of material solution
is also displayed in Fig. 6.6.2 in non-dimensional form. The curvature of
the two plots are very similar but differ in magnitude. This difference is
contributed to the fact that although the mechanics of material solution

accounts for the stiffening due to the inserts, it does not include the
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effect of interaction between inserts.

6.7 laminated Fiber Composite

A laminated composite fabricated from a fiber composite material is
shown in Fig. 6.7.1. The fiber composite is constructed with a single row
of fully-bonded fibers oriented in the same direction. A two-ply laminate
is then constructed from the fiber composite with the fibers of the two
layers oriented at 90° angles. A boundary element model created for the
study of this material is shown in Fig. 6.7.2. A small slice containing
two inserts in each layer is used. The model consists of two regions. The
outer surface of each region is modeled with sixteen quadratic boundary
elements and each insert contains two quadratic insert elements. The
interface between the two regions is assumed to be a perfect bond, however,
the present version of the program allows for sliding and spring
connections also.

The composite structure is subjected to bi-axial tension. This is
accomplished with normal tractions of 100 applied to two adjacent roller
boundary conditions applied to the opposite ends. The elastic modulus of
the composite matrix of both regions are assumed to be 100, and the moduli
of the inserts vary between 100 and 10,000. The Poisson ratio is 0.3 for
both the composite matrix and inserts at all times.

Figure 6.7.3 displays the displacement as a function of insert moduli
for a point on the interface at the corner of the plate adjacent to the
sides with the applied traction. The material exhibits less displacement

as the modulus is increased, as expected.
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Fig. 6.2.1 Discretization of an Insert in a Unit Cube Utilizing
Quadratic Insert Elements

Fig. 6.2.2 Full Three-dimensional, Multi-region Discretization
of an Insert in a Unit Cube
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Fig. 6.3.1 Arrangement of Multiple Inserts in a Unit Cube
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7. SUMMARY OF CURRENT ACHIEVEMENT

As is evident from the previous section, significant progress has been
made towards the goal of developing a general purpose boundary element
program for the micromechanical studies of advanced ceramic composites.
The formulation for elastostatic analysis of fully-bonded inserts has been
implemented and validation runs have been shown to correlate with results
obtained by full three-dimensional boundary element analyses. The
composite insert code development is based on the advanced boundary element
program BEST3D and all of its general purpose features have been retained
in the new code. These facilities which include definition of local
boundary conditions and multi-region substructuring will allow real
problems encountered in industry to be analyzed.

Considerable effort has been focused in developing a formulation that
is not only accurate, but computer efficient. For instance, analytical
integration has been performed on the kernel function of the insert and
hole in order to expedite numerical integration. Also a new boundary
integral equation formulation was developed to both facilitate an efficient
assembly scheme for the inserts, and to reduce the number of unknowns in
the system and therefore render a smaller set of equations which is less
expensive to solve.

Overall the cost of the new composite insert analysis is just slightly
more expensive (for a moderate number of inserts) than the cost of
analyzing the matrix without the inserts present. The additional cost is
primarily attributed to the additional integration of the outer surface of
the matrix which is required for additional nodes on the insert’s hole, and
towards the expense of solving a slightly larger system In any case the
price is far less than the cost required for a full three-dimensional,

multi-region analysis of the same problem since in the 3-D approach more
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two-dimensional surfaces must be integrated and far more additional
equations (for the nodes describing the hole and the insert region) must be
integrated and added to the equation system. The data preparation for the
present method is far less involved than a full three-dimensional modeling
of the composite insert using the ordinary multi-region approach.
Furthermore, the code developed for the present work allows up to 500 (100
per GMR) insert elements in an analysis. An ordinary multi-region code
would require a 500 region capability in order to compete. In terms of
computer expense and the cost of data preparation for a 500 region problem,
such analyses would be impractical.

The work in this initial year has demonstrated the accuracy and
efficiency of the composite insert formulation applied to elastostatics.
The method is not only perhaps the best tool, but also may be the only
practical tool for the analysis of composite inserts in real problems
encountered in industry. The boundary element method already has been
proven successful in multi-region, transient and steady-state,
elastodynamic and heat conduction analysis. Coupled with the success of
the present work, the plan of this contract to extend the composite insert

formulation in these other areas holds great potential.
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8. FUTURE DEVELOPMENT

Significant progress has been achieved in the first year in
developing a user friendly, ceramic composite base program. The
infrastructure of the program is set up to facilitate future development.
Presently the elastoplastic analysis for fully-bonded composite inserts has
been implemented and tested. Delivery of the present code is planned for
March 1989.

The remaining work on the present contract consists of: extending the
formulation to steady-state and transient elastodynamic and heat transfer
analysis: developing sophisticated interface connections including failure
at the interface; and incorporating thermal and nonlinear material
phenomena in the problem. The sequence for development of these tasks are
inconsequential since they are relatively independent of one another. A
workplan for their development is presented below, however, communication
with interested parties at NASA will influence the exact order in which the
work will be performed.

The primary thrust for the upcoming year will be directed toward the
incorporation of more sophisticated interface conditions. Phenomena of
interest include imperfect bonding, progressive debonding, cracking of the
matrix, and controlled tension failure of the fibers. Initially this work
will be developed for elastostatics, and extended to the other analysis
types as they are developed.

Also during the next year, work will focus on the development of a
ceramic composite analysis capability for steady-state heat conduction and
the extension of thermal effects in elastostatics analysis. One-
dimensional representations of fully-bonded ceramic fibers will be
developed and incorporated into the code for heat conduction analysis,

however, the suitability of the one-dimensional functional approximations
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must be critically examined for geometrics and material properties typical
of ceramic composites. In particular, it may prove necessary to employ a
sine-cosine variation in the circumferential direction similar to the
elastostatic formulation. Accuracy will be assessed via comparison with
full three-dimensional BEST3D analyses. During the development for steady-
state heat conduction and thermoelasticity, the thermal contact resistance
between the matrix and insert interface will be added.

Presently the insert fibers are entered in the data input of the
program as individual one-dimension line element with a prescribed radius.
This provided tremendous advantages over the full 3D approach in terms of
both modeling effort and computational efficiency. However, from a user's
standpoint, even the one-dimensional representation is cumbersome if each
fiber centerline must be defined. Clearly, a more convenient user
interface is needed in order to provide a practical tool for
micromechanical analyses of ceramic composites. This interface has been
designed and will be ﬁrplexented as part of the second year effort. As a
result, the positioning of fibers will be determined internally by the
program within any generic modeling region based upon the specification of
a few keyword-driven parameters. With this approach, the user need only
define the outer surface of the body, as in any typical BEST3D model, along
with parameters specifying the overall fiber content, shape, size and
orientation. Finally, an updated version of the ceramic composite code
will then be made available at year end.

During the remaining three years, ceramic composite analysis
capability will be developed for transient heat conduction, steady-state
and transient elastodynamics, and material nonlinearities at high
temperatures. The primary task will involve the development of appropriate

representations for the inserts. Of course, now this task is much more
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difficult due to the complexity of the governing differential equations and
fundamental solutions. Additionally, investigations will be required to
determine appropriate nonlinear material models and solution algorithms for
the elevated temperature response of ceramic composites, and extensive
testing of all of the capabilities will be conducted. Specific priorities
for this advanced work will be established during 1989. Validation and
verification runs will be conducted regularly, so that reliability is
maintained throughout the duration of the five-year program. Once again,
at the end of each program year, the resulting general purpose
micromechanical ceramic composite code will be deliverable.

The final version, in particular, will provide a very precise, yet
very efficient, user-friendly, design and analysis tool for ceramic
composites exposed to severe operating environments. The resulting
computer code will enable an engineer to undertake rapid numerical
experiments to gain insight into the micromechanics of a particular
composite. Ammed with this information, the disposition of fibers can be

selected to optimize performance under inelastic, thermal and dynamic

loading.
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LIST OP SYMBOLS

Ab.Bb Boundary system matrices in assembled form

Cij(t) A tensor dependent on location of the field point &
G-‘..F. .  FKernels of the displacement equation

NY(q) One-dimensional shape function

MB(n ,N,) Two-dimensional shape function
1°72

ty Traction

U Displacement

X Refers to global coordinates of an integration point
x System vector of unknown boundary quantities

Y System vector of known boundary quantities

eij Strain

n Refers to local coordinate of an integration point
v Poisson’s ratio

4 Refers to coordinates of a field point

%33 Stress

Subscript

, Spatial derivative

i, i,k Indicial notation

i,j,k =1,2,3
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